硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。
证明生成的过程中,约有60%的时间花在MSM上,其余时间由NTT/FTT主导。MSM和NTT都存在性能挑战,通常的解决办法:
●MSM可以在多线程上执行,从而支持并行处理。然而,当处理大型数据向量时,例如6700万个参数,乘法运算可能仍然很慢,并且需要大量的内存资源。此外,MSM存在可扩展性方面的挑战,即使在广泛并行化的情况下也可能保持缓慢。
简单来说,在其他参数相同或者差不多的情况下,内存和带宽综合决定终某个硬件在Aleo项目上的算力大小。
带宽这个概念估计很多人不是很了解,之前只是关注显存,虽然说目前Aleo官方还没有正式公布的PoSW算法,但是从目前的表述来看把NTT/FFT这个漏洞堵上是个必然,而且本身零知识证明算法是对NTT/FFT有要求的。
为了打破英伟达一家独大的局面,前任全球芯片老大英特尔和多年老对手AMD对标CUDA都分别推出了OneAPI和ROCm,Linux基金会更是联合英特尔、谷歌、高通、ARM、三星等公司联合成立了民间号称“反CUDA联盟”的UXL基金会,以开发全新的开源软件套件,让AI开发者能够在基金会成员的任何芯片上进行编程,试图让其取代CUDA,成为AI开发者的开发平台。