从管理工作角度出发, 车牌识别系统的实用性非常大。人为检测和信息登记会耗费大量的人力物力财力,还会出现很大的漏洞,出现信息披露以及上传时间不及时的现象。但是使用车牌识别系统这种高科技电子设备来检测车辆,不仅仅可以识别车牌号码信息,还方便车辆的信息管理和缴费,从这方面来看,使用性非常大。 从车辆信息管理角度来看,每年的车辆扣分,保险以及事故等等都需要大量的信息管理和登记,车辆业主无法的登记自己的车辆信息,而交通部门需要更加直观的监测测量信息,车牌识别系统就是的帮手,只要车辆经过监测设备,车辆所有的信息情况及事故情况都能够展现出来。
不需要人为的监控和调动,系统上传的信息会更加准确,很少出现漏洞。对于事故车辆信息的调查也更加的公正,直观。所以对于交通部门而言,车牌识别系统使用起来更加方便,车辆信息管理也得心应手,高科技信息科学技术高速发展,使得汽车管理工作效率也不断提高,能够准确的管理各种车辆。
尤其是在高速公路当中,车牌识别系统对于超车拍照和信息上传方面体现出强大的功能,高速公路各个隐蔽的地方都可以安装车牌识别系统设备,车辆只要出现超速的行为,系统马上捕捉信息,并且上传交管部门的系统,这样管理超车工作简单方便,而且灵敏的报警功能能够让交警时间处理事故。
安装使用车牌识别系统是具有报警功能的。在日常生活当中,无论是在小区大门还是在一些公共场所当中都能够看到自动升降杆和警卫处。在这些地方一般都会安装车牌自动识别的系统,这种识别系统有助于车辆的管理,而且还能够将一些黑名单车辆自动识别上传。 将一些黑车的信息直接上传到系统当中进行自动检测,可以看到车辆的信息,是否有过交通事故或者是肇事逃逸等信息,如果有相关信息就会启动自动报警的功能,这样管理处的人员可以及时将车辆扣押,系统识别车牌信息非常准确,不会出现任何误差,出现问题及时报警,大大的提高了工作效率。
很多公共场所都会安装车牌识别系统,是因为他的报警功能非常灵敏,如果有造势逃逸的车辆可以及时的体现出来,在时间扣押车辆来处理相关信息,报警功能可以减少人们调查的时间,很多车辆涉及到刑事案件,他们可以改造车的外观,但是无法改变车牌信息。
这种情况下使用车牌识别系统可以大大减少排查的时间,而且报警功能启动之后,可以调动距离近的警务人员来进行调查,避免不法分子有机可乘,所以安装车牌识别系统,对于公共场所的车辆管理以及小区的方面,都能够起到积极的作用,尤其是报警功能,是人们选择使用车牌识别系统的重要因素。
什么是车牌识别系统里面的软件识别和硬件识别?二者有哪些优势对比?
1.软件识别:很明显,这个词的意思可以被软件理解为车牌号。通过在电脑上安装配套的车牌识别软件,对抓取的图片进行识别。其工作方法是通过摄像头连续拍摄多张照片,选择较清晰的一张,然后利用计算机软件进行字符处理,实现车牌识别。
因为每次识别需要拍多张照片,所以软识别的速度比较慢。而且系统在抓拍画面上也是要求很高的,必须极其清晰才能达到想要的效果。该系统对现场环境和调试质量要求高。很多环境很多场合都不适用,设备的摆放相当重要。
2.硬件识别:通俗的解释就是通过独立的硬件设备进行一系列的字符处理;停车场系统行业中的硬件识别也分为两种,即单独的车牌识别仪和前端有两种硬件识别。
前端硬件识别集成摄像头适应市场需求,目前深受客户喜爱。前端硬件识别也称为一体化车牌识别摄像机。它是将传统的单个车牌识别仪嵌入到摄像头中,实现前端硬件和摄像头的一体化。系列作品。
车牌识别系统的工作过程,讲述过程中我们尽量不使用专业术语,以求让大家能够更容易理解,我们总结了八个点方便大家来清楚的了解:
1、车辆识别
当然,在拍照之前,有必要确定车辆确实进入了摄像机的焦距位置,而车牌识别系统将收集车辆的图像。因此,识别车辆是车牌识别的步。那么,如何识别车辆呢?
有很多方法,其中红外法是常用的方法。因为相机和系统被动地收集数据,所以它不知道什么时候拍照。当车辆进入拍摄区域时,红外线将被车辆阻挡。此时,相机和系统将拍摄车辆的照片,以便后续的车牌识别。当然,这种简单的红外检测是否有车辆进入,人或其他物体阻挡红外线,也会导致拍照。
带红外探测的摄像头
幸运的是,为了检测车辆是否进入范围或其他异物,将根据车辆的宽度设置红外设备。多条红外线被堵塞,宽度与车辆一致,这将导致拍照。
第二种方法是软件识别,相机不断拍照,交给系统判断。这个原则很简单,因为当没有车辆时,照片是固定的。白天,晚上,雨,阴天等等。有了基本的地图,你可以区分是否有车辆进入地图。
有人说这样的容错率太低,容易出错。是的,这真的很容易出错,所以软件了更深入的技术:车辆轮廓识别。车辆轮廓识别的轮廓识别原理与车牌识别的轮廓识别原理相同。请参考以下车牌轮廓识别部分。
2、拍照
这一步很容易理解,为进入有效焦距范围的车辆拍照。车牌识别系统的软件端将根据车辆进入的视频截取图片或直接拍照。获取照片后,提供给识别系统备用。
3、图片初级处理——灰度化、二值化
众所周知,灰色是白色和黑色之间的颜色,灰色的深度是不同的,所以白色和黑色之间有很多灰色。一旦有更多的颜色,电脑就会眼花缭乱。因此,简单地将图片转换为二级。什么是二级?也就是说,图片只有黑色和白色,也就是说,只有两个颜色值。顾名思义,将图片变成黑白的过程是二级的。另一个生动的比喻是熊猫!在计算机RGB颜色空间中,白色为255,黑色为0,其他颜色在0-255之间。
灰度化和二值化后的车辆图片
有人问,红色是白色还是黑色?黄色是白色还是黑色?不要问,在二值化的过程中,我们会根据设定的值来判断图片中的每个像素,比如160以上的白色,160以下的黑色。
4、图片降噪
什么是降噪?就像你在说话一样。你旁边的一直在吱吱作响。此时,当你与邻居交谈时,你应该注意区分电锯噪音或邻居所说的话。
二值化图片降噪
同样,在图片二值化之后,照片中可能有红色、橙色、黄色、绿色、靛蓝和紫色。如果你有一两个值,不同的颜色深度自然会出现黑白斑点。因此,我们应该根据这些斑点的颜色偏差和数量来决定是否给它们反色。也就是说,白色变成黑色,黑色变成白色。
5、图形检索,定位车牌
在这一步的图像处理中,重点是车牌检索。使用大脑的朋友可能已经意识到车牌是一个常规的矩形。我们只需要在两值之后在图片中找到矩形。问题是,你在寻找矩形。问题是一些车辆的热窗是矩形的。那些喜欢动脑筋的人已经注意到,车牌的长宽比不同于车身其他部位的形状和长宽比。
如果我们掌握了上述基本知识,我们将更接近找到车牌。计算机从左到右、从上到下扫描整个二级图像,并记录所有颜色从黑色到白色或从白色到黑色的像素。然后根据这些像素计算哪个区域是矩形并符合车牌比例。从原图截取车牌
如何判断它是否是车牌?这很简单。扫描该区域的另一波。因为这是一张二元图片,如果有车牌号,就会有黑白变化,尤其是垂直方向。这样,我们可以缩小范围,快速找到车牌。
6、车牌字符切割
在后一步中,我们成功地找到了车牌,并将其从原始图片(而不是二值图片)中截取出来。在上一步中,对截取的车牌图片进行灰度、二值和降噪处理,尤其是边缘降噪。如果降噪后干扰噪声仍然相对较大,可以使用腐蚀和膨胀算法来模糊噪声。
如果降噪后的车牌图片有倾斜现象,就需要对图片做错切变换(就是倾斜角度调整)。我们知道,有些车牌是上下结构的,这很容易通过对二值化的图片做像素扫描来检测上下两部分是否中间不粘连,如果不粘连,那就是上下结构车牌。如果不是上下结构,那就是单行结构的新车牌。二值化后的车牌(省别模糊处理了)
接下来,我们根据每个字符的宽度对扫描的二值车牌进行纵向切割。这很容易理解,因为车牌图像是二等的,所以车牌字符要么是白色的,要么是黑色的,要么是白色的,很容易得到字符的高度和宽度。切割是基于此,将车牌的所有字符切割成单个字符。
车牌字符切割后,调整为与车牌字符模板库大小近似且宽度小于模板库字符大小的图片。
7、准备好车牌字符模板库
车牌字符模板库可以事先用PS或者其他软件AI、CorlDraw等制作好,网络上有车牌字体下载。车牌字符库
也可以通过不断拍照车辆获取,这个过程就是机器学习的过程。目的就是获得车牌省别、军、警、学、使领馆等的汉字,26个英文大写字母,和0-9的10个数字。
8、车牌文字识别
接下来,将被切割的图片存入一个数组A内,将模板库的图片存入一个数组B。将两列数组逐个比对,找出相似度的模板图片,并把它们记录在一个新的数组C内。当然,我们有意地过滤了车牌中的圆点。