通过主观意识借助实体或者虚拟表现构成客观阐述形态结构的一种表达目的的物件(物件并不等于物体,不局限于实体与虚拟、不限于平面与立体)。
模型≠商品。任何物件定义为商品之前的研发过程中形态均为模型,当定义型号、规格并匹配相应价格的时候,模型将会以商品形式呈现出来。
从广义上讲:如果一件事物能随着另一件事物的改变而改变,那么此事物就是另一件事物的模型。模型的作用就是表达不同概念的性质,一个概念可以使很多模型发生不同程度的改变,但只要很少模型就能表达出一个概念的性质,所以一个概念可以通过参考不同的模型从而改变性质的表达形式。
当模型与事物发生联系时会产生一个具有性质的框架,此性质决定模型怎样随事物变化
数学模型
用数学语言描述的一类模型。数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。
数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。
数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。